

Hydro4U

Demonstrating European small hydropower technology and methods in Central Asia

Bertalan Alapfy Project Coordinator TUM Chair of Hydraulic Engineering

Daniel S. Hayes Freshwater Ecologist BOKU University

Overview

Project Type: Innovation Action

Consortium Partners: 10 from Europe, 3 from Central Asia

Total Budget:

~ 11.5 Mio. € (EU Contribution ~ 9.9 Mio. €)

Duration:

June 2021 - May 2026

Objectives

- Develop, demonstrate and assess two innovative European SHP technologies in CA
- Develop a GIS-based decision support system to enhance sustainable exploitation of SHP potentials
- Optimize the climate resilience of SHPs by including climate change scenario analysis
- Develop a scalable Water Accounting System to share energy and agriculture benefits in a climatesensitive manner under the Water-Food-Energy-Climate Nexus context
- Support the competitiveness and market uptake of European SHP technologies and planning & assessment methods in CA
- Enhance problem awareness and objectiveness of policy makers, implementers, NGOs and the public

Technologies: Shaft Power Plant

Application Range:

Modular low-head run-of-river power system with fish-friendly intake

Net Head:

2 - 12 m

Discharge (per module):

 $1.5 - 20 \text{ m}^3/\text{s}$

Power output (per module):

20 kW - 2 MW

Technologies: Francis Container

Application Range:

Standardised and modular medium head power solution installed in a standard container

Net Head Range:

30 - 130 m

Discharge Range (per module):

 $0.2 - 2.0 \text{ m}^3/\text{s}$

Power Output Range (per module):

100 kW – 1 MW

Tools & Methods: Electrofishing and Radiotelemetry

Tools & Methods: Drone Surveys

Tools & Methods: Climate Change Impact on Hydrology

- Existing Dam for Irrigation Diversion in need of refurbishment
- 3 gates, suitable for downstream integration of 2 Shaft Power Modules
 - H ~ 7-8 m
 - Q ~ 18 m³/s
 - P ~ 1.2 MW
- AEY ~ 6 GWh

2 HPP Modules New Fish Ladder New Stilling Basin Support Walls Optimized Pier Caps

Demo Site – Shakimardan

- Local Partner: Uzbekgidroenergo (UGE)
- Existing infrastructure (Intake, Penstock) to be combined with new Francis Container solution and ecological facilities.
- Social project, power plant will be able to supply the enclave in Island Operation to enhance development of the area.
- H ~ 85 m
- Q ~ 3 m³/s
- P ~ 2 MW
- AEY ~ 14 GWh

Demo Site – Shakimardan

- Intake and Penstock have been built during Soviet era, but have never been finished.
- Optimal location to demonstrate the Francis Container Soluiton (FCS) within the Hydro4U project, as several years of construction time could be saved.
- H4U team to ensure coherence with European sustainability standards:
 - Development of a seasonal ecological flow release plan for the diverted stretch
 - Construction of a fish ladder at the intake
 - Construction of a guiding rack with a downstream bypass that ensures no fish & sediment get into the penstock
 - Construction of a second fish ladder at an artificial waterfall in the diverted reach to ensure passability

Demo Site – Shakimardan, FCS Technical Design

Demo Site – Shakimardan, Assembly Pictures

Demo Site – Shakimardan, Construction Pictures

Ecological surveys

• Fundamental and applied knowledge needed

Ecological surveys

- Distribution and ecology of target fish species
- Key questions related to:
 - Snow trout habitats \rightarrow e-flows
 - Snow trout migration patterns \rightarrow passability
- Pre-HP & Post-HP sustainability assessments

Capacity building

Fotos: Daniel S. Hayes (2), Matthias Schneider (1), Tobias Hägele (1)

Fish habitats & e-flows determination

- Snow trout habitat preferences
- Fuzzy sets and rules
- Open-access data set available on Zenodo:

https://doi.org/10.5281/zenodo.14887129

Fish movements and habitat use

- Fine-scale spatio-temporal individual movement
 - Seasonal migration behavior (>1 year of tracking)
 - Habitat use assessment (Qfield App) through in-field triangulation

Tracking

Fotos: EV-INBO

Tagging

Establishment of a web-based application for decision support

- Interactive tool
 - Spatial information: existing dams, transmission network, ecology, land use, ...

Establishment of a web-based application for decision support

- Interactive tool
 - Spatial information: existing dams, transmission network, ecology, land use, ...
 - River network information: discharge, head, kW/m, kWh/m, sediment transport, ...
 - Various combined filtering options

Establishment of a web-based application for decision support

- Interactive tool
 - Spatial information: existing dams, transmission network, ecology, land use, ...
 - River network information: discharge, head, kW/m, kWh/m, sediment transport, ...
 - Various combined filtering options
 - Spatial operations

The project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101022905.

Decision support system Story Map Interactive Tool Interactive Tool Interactive Tool Image: Communicate relevant region- specific project results Site-specific assessment

Screenshot: Jan De Kevs

Home Conference Aims Highlights Program Call for Abstracts Key Dates Speakers Ticketing Contact

3rd International Conference on

Sustainability in Hydropower

2–5 September 2025 BOKU University Vienna, Austria

Solutions for Global Sustainability in Hydropower – Balancing Water Use, Ecology, and Community Benefits

https://sushp2025.boku.ac.at/

(in 😯 🗙

Thank you for your attention!

Contact:

Bertalan Alapfy, Project Coordinator

bertalan.alapfy@tum.de

Daniel S. Hayes daniel.hayes@boku.ac.at

https://sushp2025.boku.ac.at/

@Hydro4Uproject

Hydro4U Youtube

Website: <u>hydro4u.eu</u>

