

WHEN FLEXIBILITY EXTENDS POWER PLANT LIFE: BATTERY STORAGE AND RUN-OF-RIVER

JEAN-LOUIS DROMMI

ELECTRICAL EXPERT,

EDF

Funded by the European Union

www.etip-hydropower.eu

ETIP HYDROPOWER

- REN integration
 - Flexibility need increases
- Ageing units :
 - Reduce Wear & Tear due to grid frequency control FCR
- FCR provision :
 - stick to contractual regulating band
- Grid code rules :
 - Improve FCR control dynamic
- Achievement under XFLEX Hydro EU project

VOGELGRUN in brief

- Four vertical Kaplan units, 1956
 - P = 35 MW, H = 12 m, Q = 325 m³/s
- Battery Hybrid : BESS 650kW/300kWh
- 750GWh annual generation
- Two locks: 20 000 boats/year

Hybrid mode implementation

- Real time joint control : BESS + Hydro Unit
 - located at the same grid connection point
- Easy fall back to hydro stand alone mode
- Innovative approach: reduced size battery
- Compliance to TSO/RTE grid code
- Two W&T KPIs :
 - ServoMotor mileage
 - Stroke sign changes

HYBRIDIZATION ALGORITHM

- <u>Aim</u>: decreasing HPP unit movements compared to algorithm V1 \rightarrow use BESS
- <u>Method</u>: based on reasoning system

With simple rules ... for instance « IF SOC is low THEN use HPP to charge BESS »

- <u>Expected Resul</u>t: mileage reduction -79 %
- <u>Demo</u>: operated for 3 years
- <u>Analysis</u>: on site based on actual measurement and dgital twins

ETIP HYDROPOWER

Wear & Tear Assessment

Detailed **CFD/FEM studies** to identify most risk prone components

Runner: the most critical part of the turbine

- Fatigue of runner blade mechanism
- Wear of runner blade bearings

Digital twin

Neural Network based

Hydraulic model based

Model test

Lab platform

NEURAL NETWORKS FOR DIGITAL TWINS (WEAR)

***** Wear of the regulation mechanism: KPI MILEAGE of the Servomotors

***FCR** represents actually the **80%** of the **mileage**.

Mileage reduction about 50%-60% thanks to the hybridization with a small size battery (around 2% of the Power of the Turbine).

ETIP HYDROPOWER Mileage ass

Hydro-Clone [®] digital twin

Mileage assessment

 Stand-alone vs hybrid with Fuzzy Logic

Functionalities of Hybrid Control

- •FCR setpoint distribution to BESS and speed-governor and SoC-Management
- Discharge mode
- Battery test profile
- Setpoint test: BESS, Turbine

Battery-hybrid -run-of-river

- Reduced scale modeling:
 - Test rig including hydraulic, mechanical and electrical component.
 - Runner with movable blades on line
- Study
 - full energy conversion process accurately.
 - Several control strategies
- Results beyond state of the art:
 - Most of the literature's contributions on BESS-hybrid HP is simulation-based.

Battery-hybrid -run-of-river

EPFL – PTMH Testing platform

- Validate control strategies.
- Show the improvements in movement reductions.
- Show the impact of BESS size.

Configuration	Guide Vanes Opening (GVO)		Runner Blade Angle (RBA)	
	Mileage	NoM	Mileage	NoM
DLMPC (5 kW BESS)	3.33~(-93.2%)	292~(-96.8%)	1.98~(-94.0%)	258 (-97.1%)
DLMPC (9 kW BESS)	0.99~(-98.0%)	64 (-99.3%)	0.61~(-98.2%)	52~(-99.4%)
Only Hydro	49.03~(+0.0%)	9261~(+0.0%)	32.93~(+0.0%)	8970~(+0.0%)
VARspeed	109.09 (+122.5%)	$13484 \ (+45.6\%)$	0.0~(-100.0%)	0.0~(-100.0%)

3500

3000

2500

2000

1500

1000

500

-500

-1000

Technico economic performance

• Hybrid performance

• Compliant with Grid Code dynamic requirement

Economic value

- Net Present Value computing
- Hybridisation is most relevant for aged turbines
 - in order to extend operating life
 - To reduce outage risk and related revenue loss risk

ETIP HYDROPOWER

Key Takeaways

Hybridisation study of RoR unit:

- Provides regulating power while reducing W&T and minimizing BESS size
- Provides suitable solution to extend RUL of hydro units thanks to BESS addition
- Quantifies cost of generating FCR
 - Hence provides minimum FCR market value to balance W&T cost

Check On Line at : xflexhydro.com